Sylow $p$-subgroups of the general linear group over finite fields of characteristic $p$

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Irreducible characters of Sylow $p$-subgroups of the Steinberg triality groups ${}^3D_4(p^{3m})$

‎‎Here we construct and count all ordinary irreducible characters of Sylow $p$-subgroups of the Steinberg triality groups ${}^3D_4(p^{3m})$.

متن کامل

p-RATIONAL CHARACTERS AND SELF-NORMALIZING SYLOW p-SUBGROUPS

Let G be a finite group, p a prime, and P a Sylow p-subgroup of G. Several recent refinements of the McKay conjecture suggest that there should exist a bijection between the irreducible characters of p′-degree of G and the irreducible characters of p′-degree of NG(P ), which preserves field of values of correspondent characters (over the p-adics). This strengthening of the McKay conjecture has ...

متن کامل

irreducible characters of sylow $p$-subgroups of the steinberg triality groups ${}^3d_4(p^{3m})$

‎‎here we construct and count all ordinary irreducible characters of sylow $p$-subgroups of the steinberg triality groups ${}^3d_4(p^{3m})$.

متن کامل

a note on the normalizer of sylow 2-subgroup of special linear group $sl_2(p^f)$

let $g={rm sl}_2(p^f)$ be a special linear group and $p$ be a sylow‎ ‎$2$-subgroup of $g$‎, ‎where $p$ is a prime and $f$ is a positive‎ ‎integer such that $p^f>3$‎. ‎by $n_g(p)$ we denote the normalizer of‎ ‎$p$ in $g$‎. ‎in this paper‎, ‎we show that $n_g(p)$ is nilpotent (or‎ ‎$2$-nilpotent‎, ‎or supersolvable) if and only if $p^{2f}equiv‎ ‎1,({rm mod},16)$‎.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1955

ISSN: 0002-9939

DOI: 10.1090/s0002-9939-1955-0069175-3